

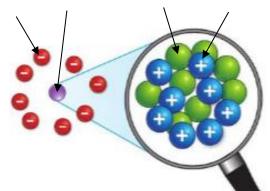
Chapitre D1 Modèle de l'atome et concept d'élément chimique

Activité 1 : Un peu de vocabulaire...

U	Ine es	pèce	chimic	rue est	une	collection	d'un	très	grand	nombre	d'en	tités	toutes	identia	ues
v		PCCC		140 COL	uiic	CONCOUCH	u u i	1100	grana		u cii	LILOO	to a to 5	IGCITTIG	uco

- 1. Cocher le bon terme dans chacune des phrases suivantes :
 - a. Une espèce chimique relève du niveau ☐ macroscopique ☐ microscopique.
 - b. Une entité chimique relève du niveau ☐ macroscopique ☐ microscopique.
- 2. On peut distinguer trois types d'entités chimiques. Pouvez-vous les citer ?

Type d'entité	Exemple de formule chimique


3. Donner dans la 2^e colonne du tableau un exemple de formule chimique pour chaque type.

Activité 2 : Dessine-moi un atome... faire le point.

1. À l'aide d'un schéma légendé de grande taille, représentez ce que vous pensez être un atome, puis le faire corriger par votre voisin.

Activité 2 - suite.

- 2. Se tester...
 - a. Compléter la légende pour l'entité représentée cicontre (4 flèches à légender).
 - b. Est-ce un atome ? Justifier la réponse.
 - c. Pour chaque ligne du tableau ci-dessous, cocher la ou les bonne(s) réponse(s).

	1	2	3
1. Un atome est constitué:	de nucléons et d'électrons.	d'un noyau entouré d'électrons.	d'un noyau contenant des électrons.
2. Le noyau de l'atome modélisé ci-contre contient :	9 nucléons.	5 protons.	4 électrons.
3. Le noyau d'un atome :	est chargé négativement.	est chargé positivement.	n'est pas chargé.
4. Un proton:	porte une charge électrique négative.	porte une charge électrique positive.	n'est pas chargé.
5. Un neutron:	porte une charge électrique négative.	porte une charge électrique positive.	n'est pas chargé.
6. Un atome:	peut être chargé.	contient des particules chargées.	est toujours électriquement neutre.

Activité 3 : Les modèles de l'atome au cours de l'histoire...

Document 1 : Au cours de l'histoire, différents modèles de l'atome ont été formulés. On en donne guelquesuns ci-dessous. Aristote J. Dalton E. Rutherford N. Bohr (384-322 av. J.-C.) (1766-1844)(1871-1937)(1885-1962)La matière se compose Les électrons se déplacent L'atome consiste en des particules Il existe un noyau atomique de quatre éléments : sphériques extrêmement petites autour duquel tournent autour du noyau sur des orbites l'eau, le feu, l'air et la terre et invisibles, propres à chaque (couches) définies. aléatoirement les électrons, et est divisible à l'infini. élément chimique et pouvant c'est le nuage électronique. 1913 réagir avec des atomes d'autres Démocrite éléments chimiques. (460-370 av. J.-C.) La matière est un ensemble de petits corpuscules qu'il nomme « atomos » 1926 (ou « atomes », 1897 insécable en grec). E. Schrödinger J.J. Thomson (1887-1961) (1856-1940) Les positions précises Antiquité grecque L'atome est comme un pudding dont d'un électron sont inconnues, la pâte comporte une charge électrique mais il est possible de définir positive et les raisins représentent les une probabilité de présence électrons de charge électrique négative. d'un électron.

En 1932, James Chadwick découvre que le noyau n'est pas seulement constitué de particules chargées mais aussi de particules neutres, les neutrons.

Document 2 : Voyage au cœur de la matière

Lorsque j'entrai au laboratoire dirigé par Joliot au Collège de France, la connaissance que j'avais de la structure de la matière ne devait guère dépasser celle acquise par un lycéen de 1993 abonné à de bonnes revues de vulgarisation. Je les résume rapidement : la matière est composée d'atomes, eux-mêmes constitués de noyaux entourés d'un cortège d'électrons. Les noyaux portent une charge électrique positive qui est de même valeur et de sens opposé à la charge des électrons qui gravitent autour du noyau. La masse d'un atome est concentrée dans le noyau. (...)

(...) Il faut avoir en tête l'échelle des dimensions. Le diamètre d'un atome est voisin d'un centième de millionième de centimètre. Celui d'un noyau d'atome est cent mille fois plus petit. On voit donc que presque toute la masse d'un atome est concentrée en un noyau central et que, loin sur la périphérie, se trouve un cortège qui est fait de particules de charge électrique négative, les électrons. C'est ce cortège seul qui gouverne le contact des atomes entre eux et donc tous les phénomènes perceptibles de notre vie quotidienne, tandis que les noyaux, tapis au cœur des atomes, en constituent la masse.

Extrait du livre <u>La vie à fil tendu</u> - G. CHARPAK, physicien français, Prix Nobel de Physique en 1992

D- La matière à l'échelle microscopique

- 1. Historiquement quel est le premier modèle qui permet d'interpréter la formation des ions ?
- 2. Quel est le premier modèle qui indique que l'atome a une structure lacunaire ?
- **3.** A quel modèle correspondaient les connaissances de G. Charpak à son entrée au laboratoire du collège de France ?

4. Associer le nom de chacune des particules (1ère ligne du tableau) à une ou plusieurs propositions de la 1ère colonne en mettant une croix dans les cases correspondantes :	molécule	atome	noyau	électron
"cœur" de l'atome				
"assemblage" d'atomes				
Entité constituée d'un noyau central autour duquel gravitent des particules beaucoup plus petites, les électrons				
<u>électrisé négativement</u>				
représente la masse de l'atome				
possède autant de charges positives que de charges négatives				
électrisé positivement				
tourne autour du noyau				
électriquement neutre				

Appeler le professeur lorsque vous avez terminé

- **5.** A l'aide du document 2, donner le diamètre moyen d'un atome sous la forme d'une fraction puis sous la forme d'un nombre décimal.
- **6.** Quel serait le diamètre moyen d'un atome si on assimilait son noyau à une balle de ping-pong de 4 cm de diamètre ?
- 7. A l'aide du modèle de l'atome distribué (celui qu'on utilise cette année), compléter le tableau ci-dessous.

Nom	Symbole de l'élément chimique	Nombre de proton Z	Nombre de nucléons A	Nombre de neutrons	Symbole du noyau	Nombre d'électron dans l'atome
Hydrogène	Н	1	1			
Carbone		6		6		
Oxygène		8		8		
Aluminium			27		²⁷ ₁₃ Al	
Chlore	Cł	17		18		

- **8.** Donner la composition de l'atome d'or dont le noyau est noté $^{197}_{79}Au$
- **9.** Calculer la masse du noyau de l'atome d'or grâce aux valeurs données dans le modèle pour la masse des nucléons.
- **10.** Calculer la masse des électrons de l'atome d'or. Vérifier qu'elle est négligeable par rapport à la masse du noyau et en déduire la masse de l'atome d'or.
- **11.** En déduire le nombre approximatif d'atomes d'or dans 1,0 g d'or.

Activité 4 : Et les ions ?

1) Quelle est la caractéristique principale d'un ion ?

- 2) Quelle propriété supplémentaire possède un ion monoatomique par rapport à un ion ?
- 3) Entourer le symbole d'un ion monoatomique sur l'étiquette d'eau minérale ci-dessus.

4) Donner la composition de l'ion Cl⁻ (on s'aidera du tableau de l'activité précédente).

Activité 4 - suite

On donne les symboles des noyaux ci-dessous :

Miné	ratisation car	ractéristiqu	ue
Calc	ium	Ca?+	96,00 mg/l
Mag	nésium	Mg ² +	6,10 mg/l
Sodi	um	Na ⁺	10,60 mg/l
Pota	ssium	K+	3,70 mg/l
Bica	rbonate	HCO ₃	297 mg/l
Sulfa	ite	SO ₄ 2-	9,30 mg/l
Nitra	te	NO ₃ -	<2 mg/l
Chlo	rure	CIT	22,60 mg/l
Dáni	d	10000 - 2	10 mail

Résidus secs à 180°C = 349 mg/l Droogresten op 180°C = 349 mg/l

Noyau de	sodium	chlore	magnésium	fer
représentation	²³ ₁₁ Na	³⁷ Cl	$^{24}_{12}{ m Mg}$	⁵⁶ ₂₆ Fe

5) A partir des énoncés du modèle et les données ci-dessus, remplir le tableau

, .	Nombre de protons	Charge du noyau	Nombre d'électrons	Charge du nuage électronique	Charge de l'atome ou de l'ion	Symbole	Anion	Cation
Ion chlorure		17e						
Atome de sodium								
Ion sodium				-10e				
lon magnésium					2e			
lon ferreux ou ion fer II			24					
Ion ferrique ou ion fer III						Fe³+		

À l'aide du simulateur "entités chimiques", vérifier vos réponses pour au moins l'atome de sodium, l'ion sodium et l'ion chlorure, et pour toutes les entités du tableau si vous en avez le temps.

Activité 5 : élément chimique

Pour répondre aux questions suivantes, vous disposez du modèle de l'élément chimique et d'une classification périodique des éléments

On considère ci-dessous les couples (Z; A) de 10 noyaux différents.

1) Trouver le nom et le symbole de l'élément correspondant dans la classification périodique.

couples (Z; A)	(34; 82)	(82; 206)	(6; 14)	(16; 34)	(8; 16)	(16; 32)	(6; 12)	(82; 210)	(34; 78)	(36; 82)
Nom										
Symbole										

2) Parmi les symboles des éléments suivants, barrer ceux qui sont incorrects et les rectifier en écrivant le bon symbole en dessous : Cu ; NA ; he ; aU ; c ; Ag ; Ca ; FE ; K

3) On donne dans le tableau ci-dessous cinq composition d'entités microscopiques. Compléter le tableau.

		Élément chimique	Symbole l'élément	de	Symbole de l'entité microscopique
29 protons + 34 neutrons + 27 électrons	☐ atome ☐ ion				
29 protons + 34 neutrons + 25 électrons	☐ atome ☐ ion				
53 protons + 74 neutrons + 54 électrons	☐ atome ☐ ion				
13 protons + 14 neutrons + 10 électrons	☐ atome ☐ ion				
36 protons + 48 neutrons + 36 électrons	☐ atome ☐ ion				