

Chapitre D1 - Exercices

Exercice 1. Composition de noyaux

Le tableau suivant donne la composition de différents noyaux. Compléter les informations manquantes.

Nombre de proton	Nombre de neutrons	Écriture conventionnelle du noyau	Formule de l'atome	
		²⁷ ₁₃ Al		
6	6		С	
6	8		С	
		²⁰² ₈₀ Hg		
	117	₇₈ Pt	Pt	

Exercice 2. Composition d'atomes.

Pour chaque colonne du tableau, déterminer la composition en protons, neutrons et électrons des atomes suivants.

Symbole de l'atome	Be	Cr	F	P
Symbole du noyau	⁹ Be		¹⁹ ₉ F	
Nombre de protons				15
Nombre de neutrons		28		16
Nombre d'électrons		24		

Exercice 3. Composition d'entités chimiques

Compléter le tableau suivant

Symbole de l'atome ou ion	В		Mg ²⁺		
Symbole du noyau			$^{25}_{12}{ m Mg}$	³⁵ C1	
Charge				-е	+3e
Nombre de protons		14			
Nombre de neutrons	6	14			30
Nombre d'électrons	5	14			23
Élément chimique		Silicium Si			Fer Fe

Exercice 4. L'aluminium

L'aluminium est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction.

Le rayon de l'atome a été déterminé et vaut r $_{atome}=0,12$ nm. On estime que le rayon de l'atome est $6x10^4$ fois plus grand que celui du noyau. L'écriture conventionnelle du noyau est $_{13}^{27}Al$.

- 1. Donner la composition du noyau d'aluminium.
- 2. Donner la composition de l'atome d'aluminium.
- 3. Quelle est la valeur du rayon du noyau r noyau exprimée en nm ? en m?
- 4. L'aluminium métallique Al est formé d'atomes d'aluminium.
 - a) Sachant qu'une feuille de papier aluminium alimentaire de 3,0g contient environ 6,5x10²² atomes d'aluminium, calculer la masse d'un atome.
 - b) Exprimer puis calculer la valeur de la masse d'un noyau d'aluminium. $\underline{Données}$: masse d'un nucléon : $m_n=1,7x10^{-27}$ kg
 - c) Sans calcul, déduire de la question précédente la masse approximative d'un atome d'aluminium (vérifier la cohérence avec la question 2-a)).
- 5. La formule de l'ion monoatomique que produit facilement l'atome d'aluminium est Al³+. Indiquer sa composition.