Exercice type bac - Pluies acides

Depuis le début des années 1950, on observe une augmentation de l'acidité des eaux de pluie dans diverses régions du monde. Ces « pluies acides » résultent essentiellement de la présence dans l'air de dioxyde de soufre et d'oxydes d'azote. Ces gaz sont issus de différentes activités industrielles et de la combustion de produits fossiles riches en soufre. Ils se dissolvent dans la vapeur d'eau de l'atmosphère et forment des espèces acides (notamment de l'acide sulfurique et de l'acide nitrique) qui acidifient les pluies [...]

D'après cnrs.fr

Le dioxyde de soufre issu de l'activité humaine est, entre autres, émis par les industries pétrolières et les centrales thermiques ; ce gaz est un traceur de pollution industrielle. Il est donc important d'en évaluer la concentration.

L'objectif de cet exercice est de savoir si une centrale thermique exploitant la combustion de carburants provenant du pétrole dépasse les seuils de qualité concernant le dioxyde de soufre.

Pour cela, on fait barboter pendant soixante heures, 10.0 m^3 de gaz émis par la centrale dans 1.0 L d'eau : on obtient la solution S_0 que l'on analyse.

On place 25,0 mL de la solution S_0 dans un erlenmeyer. On verse ensuite, goutte à goutte une solution de permanganate de potassium de concentration molaire $1,00\times10^{-4}$ mol.L⁻¹ jusqu'à persistance de la coloration violette, le volume de solution de permanganate de potassium alors versé est de 5,4 mL.

1. Questions préliminaires

- **1.1.** Sachant que les couples oxydant/réducteur mis en jeu sont MnO₄-(aq)/Mn²⁺(aq) et SO₄²⁻(aq)/SO_{2(aq)}, retrouver l'équation de la réaction modélisant l'action du dioxyde de soufre avec les ions permanganate MnO₄-(aq).
- **1.2.** Expliquer l'évolution de la couleur de la solution contenue dans l'erlenmeyer au fur et à mesure de l'ajout de la solution de permanganate de potassium.

2. Problème :

En faisant l'hypothèse que la totalité du dioxyde de soufre présent dans les effluents gazeux de la centrale thermique se dissout dans l'eau recueillie, déterminer si les gaz émis par la centrale sont conformes aux normes de qualité de l'air.

L'analyse des données ainsi que la démarche suivie seront évaluées et nécessitent d'être correctement présentées. Les calculs numériques seront menés à leur terme avec rigueur. Il est aussi nécessaire d'apporter un regard critique sur le résultat et de discuter de la validité de l'hypothèse formulée.

Données:

Élément	S	0	
Masse molaire atomique	32,1 g.mol ⁻¹	16,0 g.mol ⁻¹	

le dioxyde de soufre a des propriétés réductrices et l'ion permanganate est un puissant oxydant. Ces deux espèces chimiques réagissent ensemble selon la réaction d'équation :

$$2\;MnO_4{}^-\text{(aq)}\;+\;5\;SO_2\text{(aq)}\;+\;2\;H_2O\text{(I)}\;\rightarrow\;2\;Mn^{2+}\text{(aq)}\;+\;5\;SO_4{}^{2-}\text{(aq)}\;+\;4\;\;H^+\text{(aq)}$$

couleur des solutions aqueuses :

Solutions aqueuses	Solution d'acide sulfurique (2H ⁺ (aq) + SO ₄ ²⁻ (aq))	Solution de sulfate de manganèse (Mn ²⁺ (aq) + SO ₄ ²⁻ (aq))	Solution de permanganate de potassium (K ⁺ (aq) + MnO ₄ ⁻ (aq))	Solution de dioxyde de soufre SO _{2(aq)}
couleurs des solutions aqueuses	incolore	incolore	violet	incolore

Document : Normes de qualité de l'air relatives au dioxyde de soufre (SO₂) :

La directive 2008/50/CE du 21 mai 2008 concernant la qualité de l'air ambiant et un air pur pour l'Europe fixe des normes pour le SO₂ :

- > Seuil d'information et de recommandation⁽¹⁾: 300 μg/m³ en moyenne sur 1 heure
- > Seuil d'alerte⁽²⁾: 500 μg/m³ sur 3 heures consécutives
- (1) Le seuil d'alerte correspond à un niveau de concentration de substances polluantes audelà duquel une exposition de courte durée présente un risque pour la santé humaine de l'ensemble de la population et à partir duquel les États membres doivent impérativement prendre des mesures.
- (2) Le seuil d'information correspond à un niveau de concentration de substances polluantes au-delà duquel une exposition de courte durée présente un risque pour la santé humaine des groupes particulièrement sensibles de la population et pour lequel des informations immédiates et adéquates sont nécessaires.